EXPERIMENT AS

Atomic Spectra

Ozject: To theoretically and experimentally determine the wavelengths of the emission lines of
the Balmer series for atomic hydrogen.

Apparatus: Spectrum tube power supply, mercury and hydrogen emission tubes, diffraction
grating, meter stck. two sliding pointers, and associated mounting hardware.

Foreword

Rarefied gases can be excited to emit light. This is accomplished by intense heating or more
commonly by applying a high voliage 10 an emission tube containing the gas at low pressure. Since
early in the nineteenth cenwury, the radiaton from excited gases has been observed. It was found
that the emission spectrum (also called a bright line spectrum) was not a contnuous spectrum; it was
a discrete spectrum. As a result of the excited gases only emitting light of certain wavelengths,
when the light from the excited gases is examined through the slit of a spectroscope or spectrometer,
a line spectrum is seen instead of a continuous spectrura. The line spectrums emitted by different
elements are unigue. Therefore, the emission spectrum is characteristic of the material and it can be
used to identify the gas. If a continuous spectrum is passed through a gas, the gas will absorb the
wavelengths of light that 1t usually emits and thus produces an absorption spectrum (also called a
dark line spectrum).

It is advisable to start the study of spectra by studying the spectrum of hydrogen. Hydrogen is
the lightest atom and has the simplest atomic structure, having only one electron orbiting the
nucleus. Hydrogen zlso happens to have the simplest spectrum. The spacing in the lines of the
hydrogen spectrum decreases in an regular way; this is contrary to the specorum of most atoms which
show liittle apparent regularity. In 1885, Johann Jakob Balmer found that the four visible lines in
tte spectrum of hydrogen (with measured wavelengths 6562.8 A, 4861.3 A, 4340.5 A, and 4101.7
A), where 1 A=1X10m, would fit the formula

S B _
(1) k=R(22 - nz), n—3,4, vee

where n 1akes the vaiues 3, 4, 5, 6 for the four lines, aad R (the Rydberg constant) has the value R =
1.097 X 107 m-i. Later it was discovered that this Balmer series of lines extended into the ultraviolet
region, with a limit of the series at 3645.6 A. Balmer's equation, Eg (1), also worked for these lines
corresponding to larger integer values of n. The limit of the series at 3645.6 A corresponds to n = oo,

Experiments later showed that there were similar series of lines in the ultraviolet and infrared
regions of the bydrogen spectrum. These other series were found to fit a formula like the Balmer
series but with the 1/22 replaced by 1/12, 1/32, 1/42, eic. The Lyman series contains lines with
wavelengths between 912 A and 1216 A and fits the formula

1 1 1
(2) k=R(N- ﬁ), 8= 2.3 ...
And the lines of the Paschen series fit
1 1 1 L
(3 T = - = 4, vee s
(3) 5 R (32 112) , n . 5,

The Bohr theory predicts that the wavelengths of the emiited photons reieased when an electron
makes 2 transidon from an upper cnergy level (ny) to 2 lower energy level (1) may be determined by
the formula
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1 R
(4) A=R(m2 ’ nz)'

This gives the Balmer series when m = 2 and n = 3, 4, 5, etc.., and the Paschen series when m = 3 and n
= 4,5, 6, etc. '

Equation (4) very precisely represented the entire known hydrogen spectrum at the time,
however 1t was an empirical formula. At this point, we have a correct formula for the hydrogen
spectrum, but we sull have not derived it. The derivation of this equation was accomplished by
Niels Henrik David Bohr in 1913.

Bohr modified Rutherford's theory of the atom. He maintained the small nucleus or core of the
atom and suggested that in addition, there were electrons orbiting the nucleus. Bohr maintained that
the hydrogen atom had a nucleus consisting of a single proton with one electron orbiting the nucleus.
This planetary model of the atom is analogous to the solar system where the heavy positive nucleus is
the sun and the light negative electron is like the planet earth. Hydrogen is represented by a tiny
one-planet solar system with the electrostatic force of auraction between the oppositely charged
particles replacing the graviwational force of the solar system. The gravitational force and the
electrostatic force have respectively the general equations

MM’
(5) F=G —
r2

and
1 aq
(6) I:—47&:0 r?

Notice that both forces are inversely proportional to the square of the distance between the particles.
In the solar system, the planets have elliptical orbits that are nearly circular. The analysis, of the
classical mechanics of this problem become straightforward when the assumption is made that the
electron of the hydrogen atom travels in a circular orbit. If v is the tangenual speed of 2 mass M that
i1s revolving around a large mass M in a circular orbit of radius r, revolution occurs about the center
of mass of the system which can be taken at the center of the large mass. The gravitational force of
attraction due to M results in an centripetal force actng on M'. Therefore, we have

MM’ M2
(N F=G "7 =Ma="",
which leads to
GM
(8) vi= —/

In the Bohr model of the atom, a. electron with mass m., charge e, and tangental speed v has a
circular orbit of radius r about a2 massive nucleus with positive charge Ze. Again, the orbital center
can be taken at the center of the large nucleus. In this case, the electrosuatic force of attraction of
the nuclear charge causes the centripetal force acting on the electron. The force equation is then
given by

1 (Ze)(e) m.v?
(9) F=4_7t£0 2 =mea= T .

From equation (9) we can obtain

Ze?
4TEQm T

o

(10) v
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(In the case of hydrogen, the atomic number Z equals one. Z is included for generality.)

Equations (8) and (10) both coniain a relationship between the tangential speed v and the orbital
radius r. Therefore if one of these variables is known, then the other can easily be found. Any pair
of values of v and r that sausfy Eq. (8) may actually occur in the gravitational case. Classical physics
does not impose any restrictions on the number of solutions that may sausfy Eg. (10) in the electrical
case. Bohr imposed a restrictive condition known as the first Bohr postulate on the case of the
hydrogen ztom. He worked from the assumption that not all the possible orbits that can be calculated
from Eg. (10} acwually occur in hydrogen. Bohr's first postulate is that only those orbits occur for
which the angular momenia of the planetary electron are imtegral multiples of hi2x, that is, ni/2r.
Here h is Planck’'s consiant and n is any integer. Mathematically stated the first postulate is

nh
(1) To=T",

2n
where | is the moment of inemia of the electron about the center, © is its angular velocity, and n = 1,
2, 3, ... . The guaniity Iw = mriw = mvr for the orbiting electron. We can now state Bohr's first
postulate in a very useful form:

nh
(12) M Vr = on
Sometimes the product mevr is referred to as the moment of momentum of the electron.
Equations (10) and (12) must be simultancously sausfied by the hydrogen electron. Eliminating
v between these equations and soiving for r, we find that the only orbits that exist or are "permitied”
in the hydrogen ztom are those with radii

3 : gon2h?
( ) Tn = ﬂmczez

where the subscript n has been added to denote the radius of the n™ orbit. The smallest orbit has n =
1 and for hydrogen (Z = 1) with the value

(8.85 X 10-'2 CZ/N-m)(1)2(6.626 X 1034 15)2
(3.14)(9.11 X 10-31 kg)(1)(1.602 X 10°1% C)?

Iy =

or
ry = 0.529 X 10-19 m = 0.529 A .

This smallest radius, ry, is often referred to as the Bohr radins. From Eq. (13), we see that the
radii of the larger orbits increase as m?, so

Ip = 41’1 = 212 A

fl

Iz = 9!‘1 4.76 A

and so on. The first four are shown in figure 1.

Figure 1. Possible orbits in the Bohr model of hydrogen.
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Now we must turn our auention to the energy of the planetary elecwon. Since it may seem strange
that it proves convenient 1o consider ithe electron energy as being negative, let's review some
fundamen:al energy concepts. Only when there is an exchange of energy is it useful to use the energy
concept in calculaiions. Essentially, all energy calculations are the resulis of integrations that
always involve either an inital and a final state (evaluation of a definite integral) or an arbitrary
constan: {evaluation of an indefinite integral). Thereforc we arbitrarily assign a certain energy to a
particular state. When considering kinetic energy, we say that a body at rest has no kinetic energy.
A man on a moving bus has no kinetic relative 1o himself, but an observer on the ground regards the
man on the bus as moving and having kinetic energy. Each is correct in ierms of his arbitrary
definition of zero energy. In the case of potenual energy, the arbitrary choice of reference level is
more familiar. The gravitatonal potental energy of a mass m is mgy. When this energy is zero, we
must specify what is meant by v = 0.

We will use the siandard convention of field theory when addressing the energy of the planetary
electron. Namely, that the electron has no energy when it is at rest infinitely far from its nucleus.
Since the electron is capable of doing work as it approaches the positive nucleus, it loses electric
potential energy. The electron staried at rest at infinity with zero energy; therefore, its potential
energy must become negative as it approaches the positive nucleus.

In order 1o obtain an expression for the electric potential encrgy of an electron, we realize that
the potential at a point which is at a distance r from a nucleus having a charge Ze is

(14) Vo ——28
: —471:50 r

A negauve electronic charge at this point has potential energy Ep = V(-€) or

Ze?
(1) EP='47tsor'

Notice that the potental energy of the electron is negative everywhere except at infinity where it is
zero. UJsing Eq. {10) we find tha: its kinetic enpergy is:

1 Ze2
N 2 -
(16) Ek-zm,v = Sregr”

Therefore, the total energy of the planetary electron is the sum of the kinetic and potential energies:

Ze? Ze? Ze?
8meor 4meqr  Smegr

(17) E:Ek+Ep=

Now we have the total energy as a funcion of r. But, remember that that radius r can have only
those values that satisfy Eq. (13). Substituting in the value of r from Eg. (13), we find the allowable
energy states wo be:

(18 £ m.e4Z?

n = 8&02112}12 ’
where n = 1, 2, 3, ... . The integer n is called the total or principle quantum number and it can have
any valve of the series, 1, 2, 3, ... . The value of n restricts the energies of the states. With large

values of n, the energy is large, that is, less negauve than for small vaiues of n. We refer 10 the
energy required to remove an electron from a particular energy state to infinity as the binding energy
of that state. I1 is numerically equal w0 E,.

The energy leveis depend on the ztomic number Z and the value of n.  All the energy levels can be
found by muitiply the lowest emergy ievel by some factor. This is easily seen if we rearrange Eg. (18)
10 obtain
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m.e® 72

(19) En='3802hz n?

After evaluating all the constanis. this simplifies 1o

2

z2 Z
(20) E, = (217X 1018 ] 3= (-13.6 eV) 3

For hydrogen, Z = 1 and subsututing into Eg. (20) we have

13.6 eV
(21) Ep=- 02 R
Therefore, we have for hydrogen
El =-13.6eV,
13.6 eV
Ey = -5 =.340 eV,
4
and
13.6 eV
Ej =- ;ge =-151eV.
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Figure 2. Energy-level diagram of the hydrogen atom.
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Now we turn our attention to how Bohr attributed the hydrogen spectrum to these energy levels.
Classical electrodynamics predicts that if a charged particle is accelerated it will radiate energy.
This acceleration can be caused by either a change in direction or a change in speed. Classical theory
states that an orbital electron should radiate energy due 1o its cenuripetal acceleration. In order for
Bohr 1o preserve his atomic model of planetary electron orbits he had tc develop a theory that would
violate this classical prediction since, if correct, any electron that was separated from the nucleus
would soon radiate away its energy and be drawn into the nucleus. This second break from classical
physics by Bohr is corntained in kis second postulate. Bohr's second postulate siates that no electron
radiates energy so long as it remains in one of the orbital energy states; and that radiation occurs
only when an electron goes from a higher energy siate to a lower one, the energy of the quantum of
radiation, hv, being equal 1o the energy difference of the stotes. Leting the quantum number n = n,
represent a higher energy state and n = n| represemt a lower energy state (n; < ny), Bohr's second
postulate can be expressed mathematically as

(22) hv = Ey - Ey .

Substituting the energies from Eq. (19), we have

m.e* 72 m.e* 72
(23) SR et B BEirsuere sy B
8eph* ny 8€p“h~ nj
Solving for the frequency and simplifying we have
m.e4Z2 7 1 1
4 - 2C S S .
or in terms of the wavelength
55 1_v_ meZ? 1 1
(25) A ¢ 8gphic (nIZ . nuz)

where ¢ is the speed of light in a vacuum. For hydrogen, Z = 1; therefore Eq. (25) becomes

4

1 mMee 1 1
3 e —— .
(26) A 8502h3c (nlz nul)
Now if in Eq. (4) we let m = n; and n = n, we have.
1 1 1
o) Ton[— . —
27N i\."R(nlz 'Du2>'

Comparison of Eq. (26) with Eq. (27) shows that they are both of the same form. Furthermore, the
constant in the Bohr formulation is the Rydberg constanty, R, with value

m.e?

R = Seolnic = 1.097 X 107 m!.

The value of R given here is R, which would be correct if the mass of the elecron was infinitely
small ccmpared to the mass of the nuclens. If the nucleus’ motion is accoumed for, m,. must be
replaced by the reduced mass. Therefore, R = Rw/(l1 + m¢/M), where M is the mass of the nuclens.
This accounts for the slight variaumn of R from element to element noted by Rydberg. It is an
accomplishment of the Bohr model and theory that the slight variations between the specira of
ordinary hydrogen and its isotope, deuterium (heavy hvdrogen), c¢an be attributed to the influence of
the nuclear mass. In fact, in 1932, Harold Clayton Urey discovered deuterium spectroscopically.
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The Bohr formula vyields the Balmer series for ny = 2 and the Paschen series for ny = 3, as we have
seen pefore. However, the Bohr theory places no reswictions on n; and it suggested that there might
be addiuonal hydrogen series not yet experimenially discovered. In 1916, Theodore Lyman found a
series in the far ultraviolet, in 1922 Brackeu found a new series in the infrared, and in 1924 Pfund
found another series in the same region. Table 1 summarizes the five hydrogen series.

Table 1. The specwral series of hvdrogen

Values of m Name of series Values of n,
i Lvman 2.3.4. ...
2 Balmer 3.4,.5. .
3 Paschen 4.5.6. .
4 Brackeit 5.6.7. .
S Pfund 6.7, 8. .

In this experiment we wiil resirict our attention to the visible Balmer series which has nj =2 and n, =
3 {red), n, = 4 (bluegreen), and n, = 5 (viole1).
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Procedure

1. Place the mercury emission tube in the power supply and then turn it on. Look at the
mercury spectrum through the diffraction grating. If your vision is good you will be able to see five
emission lines (per side) with wavelengths

Area = 6193 A
Avelow = 5780 A
Agreen = 5461 A
Apue = 4358 A

4063 A.

it

Avioter

2. While looking through the diffraction gratung, recerd the left (L) and right (R) position
of each specwural line that you are able to see. Determine the average distance from
center for each specwral line, (R - L )/ 2. Turn the power supply off.

3. Using the data from step 2., plot a calibration curve of the wavelength (in A) vs. the
average distance {rom center {in cm).

4. Replace the mercury emission tube with ibc bydrogen emission wbe. Turn the power
supply on and look through the diffraction grating. You should be able 10 see three
spectral lines (per side). Record the locations and determine the average distance from
center as in step 2. Turn the power supply off.

5. Using the calibration curve, determine the wavelengiths of the three spectral lines.

6. Calculate the wavelcagihs of the specural lines using the Bohr theory.

7. Calculate the percemt difference between the experimental wavelengths and the
wavelengths predicted by the Bohr theory.
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DATA AND CALCULATION SUMMARY

Mercury Ralmer Series
-Location of Spectral Lines
Average
Color Wavelenath Left Right From Center
Red 6193 A
Yellow 5780 A
Green 5461 A
Blue 4358 A
Violet 4063 A
Hydrocen Ralmer Series
Location of Svectral Lines
Average
Color Left Right From Center
Red
Blue-green
Viclet
Wavelength
Color Ny ™ Bohr theorv From Plot % Difference
Red
Blue-green
Violet
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